Implicit Differentiation
¡@
Prepared for Gina. L
¡@
1) find dy/dx (or y') for xy2 = 3
¡@
Solution
d/dx(xy2) = d/dx(3)
x(2y)(dy/dx) + y2 = 0
2xy(dy/dx) = -y2
dy/dx = -y2/(2xy)
¡@
¡@
2) find dz/dx (or z') for x2yz = x (z, y are both a function of x)
¡@
Solution
d/dx(x2yz) = d/dx(x)
d/dx((x2)(yz)) = 1
(x2)d/dx(yz) + (yz) d/dx(x2) = 1
(x2)(y dz/dx + z dy/dx) + (yz)(2x) = 1
(x2)(y dz/dx + z dy/dx) = 1 - (2xyz)
(y dz/dx + z dy/dx) = (1 - (2xyz)) /(x2)
y dz/dx = ((1 - (2xyz)) /(x2)) - (z dy/dx)
dz/dx = (((1 - (2xyz)) /(x2)) - (z dy/dx)) / y
¡@
example
d/dx ABC can be done by grouping them.
d/dx ABC
= d/dx (A)(BC)
= A (BC)' + (BC) A'
= A (BC' + CB') + BCA'
= ABC' + ACB' + BCA'
= ABC' + AB'C + A'BC¡@
3) Given a circle equations x2 + (y+ 1)2 = 16
find the following...
3.1 Radius of the circle
3.2 Centre of the circle
3.3 The equation of the tangent pass through circle at point (0, 3).
¡@
Solution
3.1
r = ¡Ô16 = 4
¡@
3.2
Centre point is (0, -1)
¡@
Notice: If we have another circle equation as (x - 2)2 + (y- 3)2 = 16
than the centre point is (2, 3)
¡@
3.3
d/dx[x2 + (y+ 1)2] = d/dx (16)
2x + 2(y+1)(dy/dx) = 0
2(y+1)(dy/dx) = -2x
dy/dx = -2x/(2(y+1))
dy/dx = -x/(y+1)
sub x =0, y =3 into dy/dx
dy/dx = -0/(3 + 1)
= 0
¡@
Now, we have the slope of the tangent,
m (slope) = dy/dx = 0
y = mx + b
y = (0)x + b
y = b
b = 3
¡@
Answer: the tangent equation is y = 3
¡@[back]
¡@
written by : Kevin T (Mar 8, 2010)